Pooled analysis of central venous pressure and brain natriuretic peptide levels in patients with extubation failure

Jianghong Cao¹, Beibei Wang², Lili Zhu¹ and Lu Song¹

¹Department of Intensive Care Unit, Shanxi Provincial People’s Hospital, Taiyuan, China
²Department of Cardiology, The First People’s Hospital of Jinzhong, Jinzhong, China

Abstract. Background: extubation failure is related to prolonged hospital stay, high mortality and care cost. In recent years, cardiovascular insufficiency has been considered as a common cause of failed extubation, and some studies have shown that central venous pressure (CVP) and brain natriuretic peptide (BNP) can predict the extubation outcome. Therefore, we conducted a pooled analysis to evaluate that the CVP and BNP levels in critically ill patients subjected to mechanical ventilation are predictors of extubation failure.

Methods: Three online electronic databases such as web of science, EMBASE, and Cochrane Library are systematically searched up to October 2021. All data are analyzed using Review Manager 5.4. The pooled analysis results were performed depending on standardized mean differences (SMD) with 95% confidence intervals (CI) of the CVP and BNP levels for each study.

Results: A total of 13 studies with 47,561 participants were included in our study. Our results showed that elevated CVP levels were significantly associated with the risk of failed extubation (SMD: 0.54, 95% CI: 0.07 to 1.02, P = 0.03). This association also appeared after extubation (SMD: 1.39, 95% CI: 0.37 to 2.40, P = 0.008), but it did not appear before extubation (SMD: 0.04, 95% CI: -0.50 to 0.59, P = 0.88). Similarly, Our results also showed that increased BNP levels is closely related to extubation failure (SMD: 0.72, 95% CI: 0.48 to 0.96, P < 0.00001). This relationship also occurs before (SMD: 0.60, 95% CI: 0.29 to 0.90, P = 0.0001) and after (SMD: 0.92, 95% CI: 0.54 to 1.30, P < 0.00001) extubation.

Conclusions: This study showed that elevated CVP and BNP levels are associated with risk of extubation failure in critically ill patients. Compared with CVP level, BNP level is a more sensitive and accurate predictor of extubation failure.

Key words: central venous pressure, brain natriuretic peptide, extubation failure, pooled analysis.
Introduction

Extubation from mechanical ventilation is a very challenging process for clinicians in Intensive Care Unit (ICU). Premature extubation was associated with the probability of reintubation, ICU length of stay, or patient mortality. Any delayed extubation may lead to ventilator-acquired pneumonia, prolonged hospital stay and high mortality. Therefore, it is of great significance to accurately predict the time of extubation.

Traditionally, respiratory failure is considered to be the main cause of exudation failure, so previous studies have focused on breathing-related parameters, including rapid shallow breathing index (f/Vt), respiratory rate, minute ventilation, and cough intensity. Unfortunately, these factors do not predict extubation so accurately.

In recent years, more and more studies have proved that cardiac dysfunction plays an important role in exudation failure, and respiratory diseases have a certain impact on cardiac function. Thus, it is urgent to establish a simple and effective method to detect the extubation time for cardiac dysfunction.

Central venous pressure (CVP) reflects right atrial force, which is affected by cardiac function, blood volume and vascular tension. Brain natriuretic peptide (BNP) is mainly secreted by cardiomyocytes to cope with myocardial stretch and volume overload. Both are important indicators for monitoring cardiac function and volume. Previous studies have shown that the effect of BNP on extubation is controversial, and there are few studies on the effect of CVP on extubation. On basis of the current studies, we systematically reviewed the literature and conducted a pooled analysis to determine the relationship between elevated BNP and CVP and extubation failure.

Materials and methods

Search strategy

In order to identify qualified original articles, two independent researchers systematically searched three online electronic databases, such as web of science, EMBASE, and Cochrane Library, using the following keywords: “extubation,” “weaning,” “disconnect of mechanical ventilation,” “discontinuation of mechanical ventilation” AND “central venous pressure,” “CVP,” “Brain natriuretic peptide,” “BNP,” “brain natriuretic peptide”. Articles are searched up to October 2021, and are limited to published English studies. In addition, we manually searched relevant review literature and references of included studies to identify potentially relevant articles. If there is a disagreement, a third researcher will discuss the decision.

Inclusion and exclusion criteria

The inclusion criteria were as follows: The patient was hospitalized in the ICU and received no less than 24 hours of mechanical ventilation; The CVP and BNP levels were monitored before and after extubation; The patient was ready to stop mechanical ventilation and was followed up for at least 24 hours after weaning from MV. The exclusion criteria were as follows: Duplicate studies, reviews, case reports, abstracts or letters; CVP is affected by many factors such as increased intra-abdominal pressure, cough and drugs; Potential factors that interfere with BNP, such as kidney disease, sepsis, and drugs.

Data extraction and quality assessment

The two researchers independently screened the titles and abstracts in the included studies, then checked the full text according to the inclusion and exclusion criteria. Extract the following information: the first author’s name, publication year, age, male (%), country, sample size, timing of BNP and CVP measurement, methods and durations of SBT and definition of extubation failure. When there are differences in data extraction, it can be discussed with the third researcher. The Newcastle-Ottawa scale was used to assess the quality of the included studies.

Statistical analysis

All data are analyzed by Review Manager 5.4. Standard mean differences (SMD) and corresponding 95% confidence intervals (CIs) of the CVP and BNP levels were collected and calculated for each study. Heterogeneity is evaluated by calculating the I-squared (I²) index. P values of 75–100%, 50–75% and 25–50% were considered as high, moderate, and low heterogeneous respectively. If there was significant heterogeneity (I² > 50% or P < 0.05), a random effect model was used. Otherwise, the fixed effect model is applied.

The mean and standard deviation (SD) was estimated using Luo’s approach and Wan’s method respectively when the median and interquartile range (IQR) was provided. We performed subgroup analysis based on the levels of CVP and BNP before and after extubation to explore heterogeneity. Funnel plots were used to find potential publication bias. When the P value is less than 0.05, it is considered statistically significant.

Results

Study processing

Using our search strategy, a total of 1234 potentially original studies were identified from online database. After excluding duplications, there are still 874 studies remaining. After careful screening of titles and abstracts,
841 studies that did not meet the inclusion and exclusion criteria were excluded. After carefully reading the main body of the remaining 33 studies, 20 studies were excluded. In the end, 13 qualified studies met the inclusion and exclusion criteria. The studies screening process is shown in Figure 1. Meanwhile, Table 1 lists the basic characteristics of the included studies. Because NOS scores are at least 6, all studies are of high quality.

CVP and extubation

We found eight studies are about the relationship between the CVP level and extubation failure. The random effect pooled SMD was 0.54 (95% CI: 0.07 to 1.02, \(P = 0.03\)) (Fig. 2). Subgroup analysis based on the extubation time showed that the results of pooled analysis were consistent with the connection between elevated CVP level and extubation failure after (SMD: 1.39, 95% CI: 0.37 to 2.40, \(P = 0.008\)) extubation. However, this connection has no significant correlation before (SMD: 0.04, 95% CI: -0.50 to 0.59, \(P = 0.88\)) extubation. No significant publication bias was found about the CVP level and extubation failure because we obtained a roughly symmetrical funnel shape (Fig. 3).

BNP and extubation

We also found seven studies are about the association between the BNP level and extubation failure. The random effect pooled SMD was 0.72 (95% CI: 0.48 to 0.96, \(P < 0.00001\)) (Fig. 4). Based on the subgroup analysis of extubation time, we found that the pooled results were consistent with the relationship between high BNP level and extubation failure before (SMD: 0.60, 95% CI: 0.29 to 0.90, \(P = 0.0001\)) and after (SMD: 0.92, 95% CI: 0.54 to 1.30, \(P < 0.00001\)) extubation. No publication bias was also observed about the BNP level and extubation (Fig. 5).

Table 1. Characteristics of studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Age (ES/EF)</th>
<th>Male (%)</th>
<th>Setting</th>
<th>N (ES/EF)</th>
<th>Indicator</th>
<th>Timing of extubation</th>
<th>Methods and durations of SBT</th>
<th>Definition of EF NOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dodgen</td>
<td>USA</td>
<td>—</td>
<td>8</td>
<td>Cardiovascular ICU</td>
<td>152/12</td>
<td>CVP</td>
<td>Before and after extubation</td>
<td>Volume control and 30 min SBT</td>
<td>Reintubation within 96 h</td>
</tr>
<tr>
<td>Dubo</td>
<td>Chile</td>
<td>54 ± 21/24</td>
<td>81</td>
<td>Medical-surgical ICU</td>
<td>154/11</td>
<td>CVP</td>
<td>Before and after extubation</td>
<td>T-piece and 60–120 min SBT</td>
<td>Reintubation within 48 h</td>
</tr>
<tr>
<td>Gupta</td>
<td>Australia</td>
<td>—</td>
<td>53</td>
<td>Cardiovascular ICU</td>
<td>40/15</td>
<td>CVP</td>
<td>Before and after extubation</td>
<td>Volume and 30 min SBT</td>
<td>Reintubation within 96 h</td>
</tr>
<tr>
<td>Konomi</td>
<td>Greece</td>
<td>54 ± 21/69</td>
<td>40</td>
<td>Multidisciplinary ICU</td>
<td>27/15</td>
<td>CVP and BNP</td>
<td>Before and after extubation</td>
<td>T-piece and 2 h SBT</td>
<td>SBT failure or reintubation within 48 h</td>
</tr>
<tr>
<td>Ma</td>
<td>China</td>
<td>62.3 ± 12.0/59.1 ± 3.9</td>
<td>85.7</td>
<td>ICU</td>
<td>22/7</td>
<td>CVP</td>
<td>Before extubation</td>
<td>T-piece and 120 min SBT</td>
<td>Reintubation within 48 h</td>
</tr>
<tr>
<td>Saugel</td>
<td>Germany</td>
<td>63.5 ± 14.5/64.6 ± 8.4</td>
<td>86</td>
<td>Medical ICU</td>
<td>54/7</td>
<td>CVP</td>
<td>Before extubation</td>
<td>—</td>
<td>Reintubation within 48 h</td>
</tr>
<tr>
<td>Zapata</td>
<td>Spain</td>
<td>61.6 ± 14.7/66.7 ± 9.7</td>
<td>68</td>
<td>ICU</td>
<td>58/10</td>
<td>CVP and BNP</td>
<td>Before and after extubation</td>
<td>T-piece and 30–120 min SBT</td>
<td>Reintubation within 48 h</td>
</tr>
<tr>
<td>Zhao</td>
<td>MIM-IC-IV</td>
<td>—</td>
<td>64 ± 16/68 ± 15</td>
<td>ICU</td>
<td>13,433/2,756</td>
<td>CVP</td>
<td>Before extubation</td>
<td>—</td>
<td>Reintubation</td>
</tr>
</tbody>
</table>
Study Country Age (ES/EF) Male (%) Setting N (ES/EF) Indicator Timing of extubation Methods and durations of SBT Definition of EF NOS

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Age (ES/EF)</th>
<th>Male (%)</th>
<th>Setting</th>
<th>N (ES/EF)</th>
<th>Indicator</th>
<th>Timing of extubation</th>
<th>Methods and durations of SBT</th>
<th>Definition of EF</th>
<th>NOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhao 2021</td>
<td>China</td>
<td>60 ± 13 / 63 ± 12</td>
<td>—</td>
<td>ICU</td>
<td>451 / 51</td>
<td>CVP</td>
<td>Before extubation</td>
<td>—</td>
<td>NIV, reintubation or death within 48 h</td>
<td>8</td>
</tr>
<tr>
<td>Farghaly 2015</td>
<td>Australia</td>
<td>53.81 ± 18.9 / 57.14 ± 12.9</td>
<td>43</td>
<td>Respiratory ICU</td>
<td>16 / 14</td>
<td>BNP</td>
<td>Before and after extubation</td>
<td>PSV and 2 h SBT</td>
<td>SBT failure or reintubation within 48 h</td>
<td>8</td>
</tr>
<tr>
<td>Maraghi 2014</td>
<td>Egypt</td>
<td>46 ± 10.35 / 54 ± 9.25</td>
<td>32</td>
<td>ICU</td>
<td>25 / 7</td>
<td>BNP</td>
<td>Before and after extubation</td>
<td>T-piece and 2 h SBT</td>
<td>SBT failure or reintubation within 48 h</td>
<td>6</td>
</tr>
<tr>
<td>Soummer 2012</td>
<td>France</td>
<td>59 ± 14 ± 15</td>
<td>59</td>
<td>Multidisciplinary ICU</td>
<td>57 / 29</td>
<td>BNP</td>
<td>Before and after extubation</td>
<td>T-piece and 60 min SBT</td>
<td>Noninvasive or invasive ventilation) within 48 h after extubation</td>
<td>7</td>
</tr>
<tr>
<td>Tanios 2016</td>
<td>United States</td>
<td>—</td>
<td>48</td>
<td>ICU</td>
<td>56 / 29</td>
<td>BNP</td>
<td>Before extubation</td>
<td>PSV and 2 h SBT</td>
<td>SBT failure</td>
<td>6</td>
</tr>
<tr>
<td>Haij 2018</td>
<td>Australia</td>
<td>63.5 ± 4.6 / 77 ± 2.7</td>
<td>64</td>
<td>ICU</td>
<td>42 / 11</td>
<td>BNP</td>
<td>After extubation</td>
<td>PSV and 60 min SBT</td>
<td>Nonscheduled NIVM, or death within 48 h</td>
<td>7</td>
</tr>
</tbody>
</table>

Abbreviations: EF — extubation failure; ES — extubation success; ICU — intensive care unit; SBT — spontaneous breathing trial; BNP — brain natriuretic peptide; CVP — central venous pressure; NIV — noninvasive ventilation; NIVM — noninvasive ventilation mask.

Table:

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental</th>
<th>Control</th>
<th>Std. Mean Difference IV, Random, 95% CI</th>
<th>Std. Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1 Before extubation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodgen 2013</td>
<td>12.3 0.58</td>
<td>12</td>
<td>11.4 0.48</td>
<td>152</td>
</tr>
<tr>
<td>Dubo 2019</td>
<td>8 1</td>
<td>11</td>
<td>10 1</td>
<td>154</td>
</tr>
<tr>
<td>Gupta 2013</td>
<td>9 0.37</td>
<td>15</td>
<td>10 0.83</td>
<td>40</td>
</tr>
<tr>
<td>Konor 2016</td>
<td>8.5 3.5</td>
<td>15</td>
<td>6.3 2.9</td>
<td>27</td>
</tr>
<tr>
<td>Saugel 2012</td>
<td>14 4</td>
<td>7</td>
<td>14 6</td>
<td>54</td>
</tr>
<tr>
<td>Zapata 2010</td>
<td>10 4</td>
<td>10</td>
<td>10 2</td>
<td>58</td>
</tr>
<tr>
<td>Zhao 2021</td>
<td>12 5</td>
<td>2736</td>
<td>10 4</td>
<td>13433</td>
</tr>
<tr>
<td>Zhao 2021</td>
<td>12 3</td>
<td>51</td>
<td>11 2</td>
<td>451</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>2877</td>
<td>14369</td>
<td>62.7%</td>
<td>0.04 [-0.50, 0.59]</td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.53; Chi² = 107.50, df = 7 (P < 0.00001); I² = 93%</td>
<td></td>
<td></td>
<td>Test for overall effect: Z = 0.15 (P = 0.88)</td>
<td></td>
</tr>
</tbody>
</table>

1.2.2 After extubation							
Dodgen 2013	13.3 0.77	12	11.2 0.65	152	7.5%	3.17 [2.49, 3.86]	
Dubo 2019	12 1.2	11	10 1	154	7.6%	1.96 [1.32, 2.61]	
Gang 2013	7 2	7	5.9 5	22	6.9%	0.24 [0.62, 1.09]	
Gupta 2013	10 0.53	15	9.2 1	40	7.7%	0.88 [0.26, 1.49]	
Zapata 2010	11 4	10	9 3	58	7.5%	0.63 [0.05, 1.31]	
Subtotal (95% CI)	55	426	37.3%	1.39 [0.37, 2.40]			
Heterogeneity: Tau² = 1.22; Chi² = 43.59, df = 4 (P < 0.00001); I² = 91%			Test for overall effect: Z = 2.67 (P = 0.008)				

Fig. 2. The CVP levels standard mean difference between extubation failure and extubation success groups.

Discussion

In our study, we revealed association of high CVP and BNP level with an increased risk of extubation failure in critically ill patients from mechanical ventilation. This association was also found in the BNP levels before extubation, and both BNP and CVP levels after extubation. However, this association did not appear in the CVP level before extubation. Thus, these results indicate that the...
measurement of CVP and BNP levels may be useful indicators for patients with extubation from mechanical ventilation. Moreover, compared with CVP level, BNP level is a more sensitive predictor of extubation failure.

In the process of extubation from mechanical ventilation, the intrathoracic pressure is formed from positive to negative, which promotes the systemic venous blood reflux increases the right ventricular preload and augmented left ventricular transmural pressure and afterload. Moreover, emotional stress and potential hypoxia during extubation may lead to sympathetic excitation. Many critically ill patients have undiagnosed or subclinical cardiovascular diseases and improper fluid management, and cardiovascular compensation are often hindered by potential critical illnesses. Thus, insufficient cardiac reserve may lead to subsequent respiratory insufficiency and failed extubation. Both CVP and BNP can monitor heart function and volume. Critically ill patients in the ICU often require an indwelling central venous catheter to monitor cardiac function and fluid replacement.
There are few studies on the relationship between extubation and CVP level. Our study suggested that pooled CVP levels are associated with extubation failure, and this association is also seen after extubation. This result is consistent with Dubo’s finding which an early risen CVP levels after extubation increases the risk of extubation failure.20 However, this association was not observed before extubation. Since cardiovascular dysfunction may be difficult to detect in patients with positive pressure ventilation29, it is difficult to detect cardiac dysfunction before extubation by CVP.

BNP has been proved to be a sensitive serum marker of cardiovascular dysfunction.30 Zapata et al.15 and Lara et al.31 found compared with patients with successful extubation, patients with failed extubation had higher BNP before and after extubation. Our study confirmed also that the high BNP level was significantly associated with an increased risk of extubation failure. Similarly, this association appeared before and after extubation. Some studies have shown that increased BNP after extubation is a predictive factor for extubation failure.29,31 Our study revealed that elevated BNP levels before extubation increase the risk of extubation failure, since BNP is a sensitive indicator of cardiac insufficiency, potential cardiac insufficiency can be detected as soon as possible. In addition, the fixed model for studies on the BNP levels and extubation failure, but there is substantial heterogeneity about CVP study, which may be due to the different participants and different study designs, so the random model is used.

Our study has some limitations, which must be discussed. First, the included studies are far from enough and may affect the accuracy of the results. Second, although CVP can reflect cardiac function more specifically, its monitoring is affected by many factors, such as the patient’s position, the accuracy of the measurement method, and the patency of the pipeline, but these factors are all controllable. Third, although BNP can detect cardiac insufficiency earlier, its level may be affected by some factors such as age, obesity and renal function. Finally, since we do not have the original data for drawing the ROC curves, we cannot determine the reliable cut-off point of the CVP and BNP tests.

Conclusion

Our study showed that elevated CVP and BNP levels are related to the risk of extubation failure. More importantly, compared with CVP level, BNP level is a more sensitive and accurate predictor of extubation failure.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent to public

Not applicable.

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Competing interests

The authors declare that they have no competing interests.
Funding

This work is not supported by grants.

Author Contributions Statement

C.J.H. and W.B.B. wrote the main manuscript text, and Z.L.L. prepared figures 1–5 and Table 1. All authors reviewed the manuscript.

Acknowledgements

Not applicable.

References

Резюме. Мета: неэффективная экспирация связана с длительным пребыванием в стационаре, высокой смертностью и степенью ухудшения. В последние годы сердечно-сосудистая недостаточность рассматривалась как частая причина неудачной экспирации, и некоторые исследования показали, что центральное венозное давление (CVP) и уровень натрийуретического пептида головного мозга (BNP) могут предсказывать исход экспирации. Поэтому мы провели объединенный анализ, чтобы оценить, что уровни CVP и BNP могут предсказывать исход экспирации. Поэтому мы провели объединенный анализ, чтобы оценить, что уровни CVP и BNP могут предсказывать исход экспирации.

Метод: систематический поиск в трех электронных базах данных, как-то Web of Science, EMBASE и Cochrane Library, ведется до июля 2021 года. Все данные анализируются с помощью Review Manager 5.4. Результаты синтезированного анализа были включены на основании соотношений средних различий (SMD) с 95% доверительными интервалами (CI) уровней CVP и BNP для каждого исследования.

Результаты: основного анализа включено 13 исследований из 47 561 участвующих. Наши результаты показывают, что повышенные уровни CVP и BNP связаны с риском неудачи экспирации (SMD: 0.54, 95% CI: 0.07–1.02, P = 0.03). Эти ассоциации также выявлена позднее экспирации (SMD: 1.39, 95% CI: 0.37–2.40, P = 0.008), но не появилась до экспирации (SMD: 0.04, 95% CI: 0.50–0.59, P = 0.88). Гораздо более точное значение получено на участвующих и спустя (SMD: 0.72, 95% CI: 0.48–0.96, P < 0.00001) и после (SMD: 0.92, 95% CI: 0.54–1.30, P < 0.00001) экспирации.

Выводы: это исследование показало, что повышенные уровни CVP и BNP связаны с риском неудачи экспирации у пациентов в критическом состоянии. По сравнению с уровнем CVP уровень BNP является более чувствительным и точным предиктором неудачи экспирации.

Ключевые слова: центральное венозное давление, недостаточность экспирации, мозговой натрийуретический пептид, объединенный анализ.

Объединенный анализ центрального венозного давления и уровня натрийуретического пептида в головном мозге у пациентов с неудачей экспирации

Цзянхон Цао1, Бэйбэй Ван2, Лили Чжу1, Лу Сон1
1Отделение кардиологии, Первая народная больница Чжэцзян, Чжэцзян, Китай
2Отделение интенсивной терапии, Народная больница провинции Шаньси, Тайюань, Китай

Выводы: это исследование показало, что повышенные уровни CVP и BNP связаны с риском неудачи экспирации у пациентов в критическом состоянии. По сравнению с уровнем CVP уровень BNP является более чувствительным и точным предиктором неудачи экспирации.

Ключевые слова: центральное венозное давление, недостаточность экспирации, мозговой натрийуретический пептид, объединенный анализ.