Changes of immunological reactivity during surgery and in postoperative period depending on analgesic regimen

Authors

  • I. Y. Popko National Pirogov Memorial Medical University, Vinnytsia, Ukraine
  • D. V. Dmytriiev National Pirogov Memorial Medical University, Vinnytsia, Ukraine

Keywords:

immunosuppression, immune cells, immune responses, general anesthesia, regional anesthesia, opioids, morphine, fentanyl, nalbuphine, local anesthetics, propofol, volatile anesthetics

Abstract

Different components of surgery are able to suppress immunity, presumably affecting the immune system or activating neuroendocrine system directly. Along with perioperative stress such as surgery, blood loss, hemotransfusion, hypothermia, hyperglycemia and postoperative pain, anesthetics are also associated with suppressed immunity because of direct suppressive effects on cellular and humoral immunity through influence upon the functions of immunocompetent cells, and expression and secretion of inflammatory mediator genes. It leads to the secondary immune deficiency and affect the long-range prognosis in patients after surgery. Therefore, awareness of immunological properties in the surgical area might be significant for any anesthetic management. The article summaries data about the difference in immunological effects depending on the type of anesthesia and shows its possible practical usage in various clinical cases.

Downloads

Download data is not yet available.

References

Kurosawa S., Kato M. (2008) Anesthetics, immune cells and immune responses // J. Anesth. – 22 : 263–277.

Kennedy B. C., Hall G. M. Neuroendocrine and inflammatory aspects of surgery : do they affect outcome? – Acta Anaesthesiol Belg., 1999. – 50 : 205–209.

Elenkov I. J., Chrousos G. P. Stress hormones, proinflammtory and anti-inflammatory cytokines, and autoimmunity // Ann NY Acad Sci. – 2002. – 966 : 290–303.

Chrousos G. P. Seminars in medicine of the Beth Israel Hospital, Boston: The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation // N Engl J. Med. – 1995. – 332 : 1351–1362.

Хаитов Р. М., Пинегин Б. В. Изменение иммунитета при хирургических вмешательствах // Анналы хирургической гепатологии. – 1998. – Т. 3, № 2. – 100–110.

Винницкий Л. И., Тимербаев В. Х., Визигина Л. И. и др. Факторы местной защиты легких и клеточный иммунитет у больных до и после торакальной операции // Анестезиология и реаниматология. – 1996. – 3 : 18–21

Ryhanen P., Surcel H. M., Ilonen J. Decreased expression of class II major histocompatibility complex (MHC) molecules on monocytes is found in open-heart surgery related immunosuppression // Acta Anaesthesiol Scand. – 1991. – 35 : 453–56/

Kenji Ogawa, Masanori Hirai, Takao Katsube, Minoru Murayama. Suppression of cellular immunity by surgical stress // Surgery. – 2000. – 127 : 329–36.

Graham E.A. The influence of ether and ether anesthesia on bacteriolysis, agglutination and phagocytosis // J. Infect. Dis. – 1911. – 8 : 147.

Gaylord H. R., Simpson B. T. Effect of certain anaesthetics and loss of blood upon growth of transplanted mouse cancer // Journal of Cancer Research. – 1916. – 1 : 379–82.

Welch W.D. Halothane reversibly inhibits human neutrophil bacterial killing // Anesthesiology. – 1981. – 55 : 650–654.

Fröhlich D., Rothe G., Schwall B. et al. Effects of volatile anaesthetics on human neutrophil oxidative response to the bacterial peptide FMLP // Br J. Anaesth. – 1997. – 78 : 718–723.

Fan H., Sun B., Gu Q. et al. Oxygen radicals trigger activation of NF-κВ and AP-1 and upregulation of ICAM-1 in reperfused canine heart // Am J Phisiol. – 2002. – 282 : H1778–1786.

Hu G., Vinten-Johansen J., Salem M. R. et al. Isoflurane inhibits neutrophil-endothelium interactions in the coronary circulation : lack of role for adenosine triphosphate-sensitive potassium channels // Anesth Analg. – 2002. – 94 : 849–856.

Jordan J. E., Zhao Z-Q., Vinten-Johanen J. The role of neutrophils in myocardial ischemia-reperfusion injury // Cardiovasc Res. – 1999. – 43 : 860–878.

Boost K. A., Flondor M., Hofstetter C. et al. The beta-adrenoceptor antagonist propranolol counteracts anti-inflammatory effects of isoflurane in rat endotoxemia // Acta Anaesthesiol Scand. – 2007. – 51 : 900–908.

Markovic S. N., Knight P. R., Murasko D. M. Inhibition of interferon stimulation of natural killer cell activity in mice anesthetized with halothane or isoflurane // Anesthesiology. – 1993. – 78 : 700–706.

Melamed R., Bar-Yosef S., Shakhar G. et al. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: Mediating mechanisms and prophylactic measures // Anesth Analg. – 2003. – 97:1331–1339.

Hamra J. G., Yaksh T. L. Halothane inhibits T cell proliferation and interleukin-2 receptor expression in rats // Immunopharmacol Immunotoxicicol. – 1996. – 18 : 323–336.

Matsuoka H., Kurosawa S., Horinouchi T. et al. Inhalation anesthetics induce apoptosis in normal peripheral lymphocytes in vitro // Anesthesiology. – 2001. – 95 : 1467–1472.

Loop T., Dovi-Akue D., Frick M. et al. Volatile anesthetics induce caspase-dependent, mitochondria-mediated apoptosis in human T lymphocytes in vitro // Anesthesiology. – 2005. – 102 : 1147– 1157.

Green D. R. Overview : Apoptotic signaling pathway in the immune system // Immunol Rev. – 2003. – 193 : 5–9.

Mikawa K., Akamatsu H., Nishina K. et al. Propofol inhibits human neutrophil functions // Anesth Analg. – 1998. – 87 : 695–700.

Heine J., Jaeger K., Osthaus A. et al. Anaesthesia with propofol decreases FMLP-induced neutrophil respiratory burst but not phagocytosis compared with isoflurane // Br J. Anaesthesia. – 2000. – 85 : 424–430.

Huettemann E., Jung A., Vogelsang H. et al. Effects of propofol vs. methohexital on neutrophil function and immune status in critically ill patients // J. Anesth. – 2006. – 20 : 86–91.

Wu G. J., Tai Y. T., Chen T. L. et al. Propofol specifically inhibits mitochondrial membrane potential but not complex I NADH dehydrogenase activity, thereby reducing cellular ATP biosynthesis and migration of macrophages // Ann NY Acad Sci. – 2005. – 1042 : 168–176.

Chen R. M., Wu C. H., Chang H. C. et al. Propofol suppresses macrophage functions and modulates mitochondrial membrane potential and cellular adenosine triphosphate synthesis // Anesthesiology. – 2003. – 98 : 1178–1185.

Chang H., Tsai S. Y., Chang Y. et al. Therapeutic concentration of propofol protects mouse macrophages from nitric oxide-indiced cell death and apoptosis // Can J. Anesth. – 2002. – 49 : 477–480.

Salo M., Pirttikangas C. O., Pulkki K. Effects of propofol emulsion and thiopentone on T-helper cell type-1/type-2 balance in vitro // Anesthesia. – 1997. – 52 : 341–344.

Tønnesen E, Wahlgreen C. Influence of extradural and general anaesthesia on natural killer cell activity and lymphocyte subpopulations in patients undergoing hysterectomy // Br. J. Anaesth. –1988. – 60 : 500–507.

Høgevold H. E., Lyberg T., Kähler H. et al. Changes in plasma IL-1-β, TNF-α and IL-6 after total hip replacement surgery in general or regional anesthesia // Cytokine. – 2000. – 12 : 1156– 1159.

Hole A., Unsgaard G. The effect of epidural and general anaesthesia on lymphocyte functions during and after major orthopaedic surgery // Acta Anaesthesiol Scand. – 1983. – 27 : 135–141.

Whelan P., Morris P. J. Immunological responsiveness after transurethral resection of the prostate: general versus spinal anaesthetic // Clin Exp Immunol. – 1982. – 48 : 611–618.

Viviano E., Renius M., Rückert J. C. et al. Selective neurogenic blockade and perioperative immune reactivity in patients undergoing lung resection // J Int Med Res. – 2012. – 40(1) : 141–56.

Manglik A., Kruse A. C., Kobilka T. S. et al. Crystal structure of the mu-opioid receptor bound to a morphinan antagonist // Nature. – 2012. – 485 : 321–326.

Dietis N., Rowbotham D. J., Lambert D. G. Opioid receptor subtypes: fact or artifact? // Br. J. Anaesth. – 2011. – 107 : 8–18.

Pasternak G. W. Molecular insights into mu opioid pharmacology: from the clinic to the bench // Clin J. Pain. – 2010. – 26 (Suppl. 10) : S3–S9.

Lotsch J., Geisslinger G. Are mu-opioid receptor polymorphisms important for clinical opioid therapy? // Trends Mol Med. – 2005. – 11 : 82–89.

Yeager M. P., Procopio M. A., DeLeo J. A. et al: Intravenous fentanyl increases natural killer cell cytotoxicity and circulating CD16(+) lymphocytes in humans // Anesth Analg. – 2002. – 94 : 94–99.

Carr D. J., Rogers T. J., Weber R. J. The relevance of opioid receptors on immunocompetence and immune homeostasis // Proc Soc Exp Biol Med. – 1996. – 213 : 248–257.

Freier D. O., Fucks B. A. A mechanism of action for morphine induced immunosuppression: corticosterone mediates morphine induced suppression of NK cell activity // J Pharmacol Exp Ther. – 1993. – 270 : 1127–1133

Flores L. R., Dretchen K. L., Bayer B. M. Potential role of the autonomic nervous system in the immunosuppressive effects of the acute morphine administration // Eur J Pharmacol. – 1996. – 318 : 437–446.

Mellon R. D., Bayer B. M. Evidence for central opioids receptors in the immunomodulatory effects of morphine: review of potential mechanisms of action. J Neuroimmunol. – 1998. – 83 : 19–28.

Smith E. M. Opioid peptides in immune cells // Adv Exp Med Biol. – 2003. – 521 : 51–68.

Sacerdote P., Limiroli E., Gaspani L. Experimental evidence for imunomodulatory effects of opioids // Adv Exp Med Biol. –2003. – 521 : 106–116.

Welters I. D., Fimiani C., Bilfinger T. V., Stefano G. B. NF-kB, nitric oxide and opiate signaling // Med Hypothesis. –2000. – 54 : 263–268.

Welters I. D., Menzebach A., Goumon Y. et al. Morphine suppresses complement receptor expression, phagocytosis, and respiratory burst in neutrophils by a nitric oxide and mu(3) opiate receptor-dependent mechanism // J Neuroimmunol. – 2000. – 111 : 139–145.

Eisenstein T. K., Hillburger M. E. Opioid modulation of immune responses: effects on phagocyte and lymphoid cell population // J Neuroimmunol. – 1998. – 83 : 36–44.

Yeager M. P., Colacchio T. A., Yu C. T. et al. Morphine inhibits spontaneous and cytokine-enhanced natural killer cell cytotoxicity in volunteer // Anesthesiology. – 1995. – 83 : 500–508.

Roy S., Charboneau R. G., Barke R. A. Morphine synergizes with lipopolysaccharide in a chronic endotoxemia model // J. Neuroimmunol. – 1999. – 95 : 107–114.

Casalinuovo I. A., Graziano R., Di Francesco P. Cytokine secretion by murine spleen cells after inactivated Candida albicans immunization. Efect of cocaine and morphine treatment // Immunopharmacol Immunotoxicol. – 2000. – 22 : 35–48.

Yin D., Mufson R. A., Wang R., Shi Y. Fas-mediated cell death promoted by opioids // Nature. – 1999. – 397 : 218.

Krumholz W., Endrass J., Hemplemann G.. Inhibition of phagocytosis and killing of bacteria by anaesthetic agents in vitro // Br. J. Anaesth. – 1995. – 75 : 66–70.

Larsen B., Gudrun H., Wolfram W. et al. Effect of intravenous anesthetics on spontaneous and endotoxin-stimulated cytokine response in cultured human whole blood // Anesthesiology. – 1998. – 89 : 1218–1227.

Shavit Y., Ben-Eliyahu S., Zeidel A., Beilin B. Effects of fentanyl on natural killer cell activity and on resistance to tumor metstasis in rats. Dose and timing study // NeuroImmunomodulation. – 2004. – 11 : 255–260.

Yeager M. P., Procopio M. A., DeLeo J. A. et al. Intravenous fentanyl increases natural killer cell cytotoxicity and circulating CD16-lymphocytes in humans // Anesth Analg. – 2002. – 94 : 94–99.

Jacobs R., Karst M., Scheinichen D. et al. Effects of fentanyl on cellular immune functions in man // Int J. Immunopharmacol. – 1999. – 21 : 445–454.

Bilfinger T. V., Fimiani C., Stefano G. B. Morphine’s immunoregulatory actions are not shared by fentanyl // Int J. Cardiol. – 1998. – 64 (suppl 1) : S61–66.

Лесной И. И., Сидор Р. И., Храновская Н. Н. и др. Роль различных групп аналгетиков в безопасности периоперационного обезболивания онкохирургических больных // Біль, знеболювання і інтенсивна терапія. – № 1. – 2016. – 61–70.

Homburger J. A., Meiler S. E. Anesthesia drugs, immunity, and long-term outcome // Curr Opin Anaesthesiol. – 2006. – 19 : 423–8.

Yang C., Chang H., Zhang T., Liang C., Li E. Pre-emptive epidural analgesia improves post-operative pain and immune function in patients undergoing thoracotomy // ANZ J. Surg. – 2015 Jun. – 85(6) : 472–7.

Published

2017-03-01

How to Cite

1.
Popko IY, Dmytriiev DV. Changes of immunological reactivity during surgery and in postoperative period depending on analgesic regimen. PMJUA [Internet]. 2017 Mar. 1 [cited 2021 Sep. 23];2(1):28-33. Available from: https://painmedicine.org.ua/index.php/pnmdcn/article/view/43