Fundamentals of the modern theory of the phenomenon of "pain" from the perspective of a systematic approach. Neurophysiological basis. Part 1: A brief presentation of key subcellular and cellular ctructural elements of the central nervous system.

  • V I Poberezhnyi Private enterprise “Medical innovative technologies”
  • O V Marchuk Vinnytsia National Pirogov Memorial Medical University
  • O S Shvidyuk Private enterprise “Medical innovative technologies”
  • I Y Petrik Private enterprise “Medical innovative technologies”
  • O S Logvinov Vinnytsia Regional Center for Emergency Medical Care and Disaster Medicine
Keywords: “pain”, central nervous system, nervous tissue, neuron, spines, dendrites, soma, axon, computational properties, glial cells, astrocytes, oligodendrocytes, microglial cells

Abstract

The phenomenon of “pain” is a psychophysiological phenomenon that is actualized in the mind of a person as a result of the systemic response of his body to certain external and internal stimuli. The heart of the corresponding mental processes is certain neurophysiological processes, which in turn are caused by a certain form of the systemic structural and functional organization of the central nervous system (CNS). Thus, the systemic structural and functional organization of the central nervous system of a person, determining the corresponding psychophysiological state in a specific time interval, determines its psycho-emotional states or reactions manifested by the pain phenomenon.

The nervous system of the human body has a hierarchical structure and is a morphologically and functionally complete set of different, interconnected, nervous and structural formations. The basis of the structural formations of the nervous system is nervous tissue. It is a system of interconnected differentials of nerve cells, neuroglia and glial macrophages, providing specific functions of perception of stimulation, excitation, generation of nerve impulses and its transmission.

The neuron and each of its compartments (spines, dendrites, catfish, axon) is an autonomous, plastic, active, structural formation with complex computational properties. One of them – dendrites – plays a key role in the integration and processing of information.

Dendrites, due to their morphology, provide neurons with unique electrical and plastic properties and cause variations in their computational properties. The morphology of dendrites: 1) determines – a) the number and type of contacts that a particular neuron can form with other neurons; b) the complexity, diversity of its functions; c) its computational operations; 2) determines – a) variations in the computational properties of a neuron (variations of the discharges between bursts and regular forms of pulsation); b) back distribution of action potentials.

Dendritic spines can form synaptic connection – one of the main factors for increasing the diversity of forms of synaptic connections of neurons. Their volume and shape can change over a short period of time, and they can rotate in space, appear and disappear by themselves. Spines play a key role in selectively changing the strength of synaptic connections during the memorization and learning process.

Glial cells are active participants in diffuse transmission of nerve impulses in the brain. Astrocytes form a three-dimensional, functionally “syncytia-like” formation, inside of which there are neurons, thus causing their specific microenvironment. They and neurons are structurally and functionally interconnected, based on which their permanent interaction occurs. Oligodendrocytes provide conditions for the generation and transmission of nerve impulses along the processes of neurons and play a significant role in the processes of their excitation and inhibition. Microglial cells play an important role in the formation of the brain, especially in the formation and maintenance of synapses.

Thus, the CNS should be considered as a single, functionally “syncytia-like”, structural entity. Because the three-dimensional distribution of dendritic branches in space is important for determining the type of information that goes to a neuron, it is necessary to consider the three-dimensionality of their structure when analyzing the implementation of their functions.

Downloads

Download data is not yet available.

References

Побережный ВИ, Марчук АВ, Швыдюк ОС, Петрик ИЮ. Основы современной формализации теории боли с позиции системного подхода. Теория “феномена боли” (психологические основы). Новые подходы исследования этого феномена. Pain Medicine/Медицина Боли. 2017; 2:7–30.

Побережный ВИ, Марчук АВ, Швыдюк ОС, Петрик ИЮ. Основы современной теории феномена “боль” с позиции системного подхода. К вопросам его психологического компонента. Терминология системного подхода и краткое представление организма человека как системы. Pain Medicine/Медицина Боли. 2018; 2: 7–30.

Еникеев МИ. Общая и социальная психология: учебник для вузов. М.: Изд. группа НОРМА; ИНФРА-М, 1999. 330 с.

Побережный ВИ, Марчук АВ. Прикладное значение формализации дефиниции “боль” на основе функционального системного подхода. Краткое представление общей теории систем и её образно-понятийного аппарата. Схема патогенеза феномена “боль”. Pain Medicine/Медицина Боли. 2016;2:7–26.

Ревенко СВ, Ермишкин ВВ, Селектор ЛЯ. Периферические механизмы ноцицепции. Сенсорные системы. 1988;2:198–210.

Melzack R, Wall PD. Pain mechanisms: a new theory. Science;1965;150:971–9.

Wall PD, Melzack R, еds.Textbook of Pain.3rd ed. Edinburgh: Churchill Livingstone; 1994.

Kenshalo D, eds. Sensory, motivational and central control determinants of pain: A new conceptual model. The skin senses. Springfield, IL: Thomas. 1968:423–43.

Gatchel RJ, Turk DС, eds. Pain and stress: A new perspective. Psychosocial factors in pain: Critical perspectives. New York: Guilford Press; 1999:89–106.

Крыжановский ГН. Центральные механизмы патологической боли. Неврол. и психиатр. 1999;99:4–7.

pkarian AV, Sosa Y, Sonty S. еt al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J. Neuroscien. 2004;24 (46):10410–5.

Виноградова ОС. Нейронаука конца второго тысячелетия: смена парадигм. Журн. высш. нервн. деят., 2000;50(5): 743–74.

Покровский ВМ, Коротько ГФ, ред. Физиология человека: учебник. М.: Медицина; 1997.

Агаджанян НА, Смирнов ВМ. Нормальная физиология: учебник для студ. мед. вузов. М.: ООО “Медицинское информационное агентство”, 2009. 520 с.

Шевчук ВГ, ред. Фізіологія: підручник для студ. вищ. мед. закл. Вид. 2. Вінниця: Нова Книга; 2015. 448 с.

Овчинников НФ, Юдин ЭГ. Советская энциклопедия. М.; 1976.

Побережный ВИ, Прохоров ДД, Швыдюк ОС. Новые подходы к изучению электромагнитного поля организма человека и его внутренних органов как основа создания инновационных методов диагностики. Pain Medicine/Медицина Боли. 2016;1: 35–49.

Балаболкин МИ. Эндокринология. 2-е изд. М.: Универсум паблишинг; 1998:12–8.

Зайчик АШ, Чурилов ЛП. Общая патофизиология с основами иммунопатологии. – 4-е изд. СПб.: ЭлБи; 2008. 656 с.

Сидоров АВ. Физиология межклеточной коммуникации: учеб. пособие. Минск: БГУ; 2008. 215 с.

Ожегов СИ, Шведова НЮ. Толковый словарь русского языка. М.; 1997.

Словарь иностранных слов. 13-е изд. М.;Рус. яз.; 1986. 608 с.

Зенович ЕС. Словарь иностранных слов и выражений. М.: Агентство КРПА; “Олимп”; Издательство АСТ; 2002. 778 с.

Encyclopedia Britannica. Multimedia, 1997.

Афанасьев ЮИ, Юрина НА, Котовский ЕФ и др. Гистология, эмбриология, цитология: учебник. 6-е изд. 2012. 800 с.

Changeux JP, Garey L. Neuronal Man – The Biology of Mind. Princeton University Press; 1997:28.

French RD. Some problems and sources in the foundation of modern physiology in Great Britain. Hist. Sci., 1971;10:28–9.

Медников БМ. Биология: формы и уровни жизни. М.: Просвещение, 1994. 415 с.

Покровский ВМ, Коротько ГФ, ред. Физиология человека: учебник. М.: Медицина; 1997.

Агаджанян НА, Смирнов ВМ. Нормальная физиология: учебник для студ. мед. вузов. М.: ООО “Медицинское информационное агентство”, 2009. 520 с.

Шевчук ВГ, ред. Фізіологія: підручник для студ. вищ. мед. закл. Вінниця: Нова Книга; 2012. 448 с.

Смирнов ВМ. Нейрофизиология и высшая нервная деятельность детей и подростков: Учеб. пособие для студ. дефектол. фак. высш. пед. учеб. заведений. М.: Издательский центр “Академия”; 2000. 400 с.

Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952, Aug. V. 117 (4):500–44.

Malmivuo J., Plonsey R. Bioelectromagnetism. Oxford University Press: New York, Oxford; 1995.

Шмидт Р., Тевс Г., ред. Физиология человека: в 3-х томах. Пер. с англ. 3 изд. М.: Мир; 2007, Т. 1. – 323 с.

Finch EA, Augustine GJ. Local calcium signaling by inosi-tol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature, 1998. V.396(6713):753–6.

Skulachev VP. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Scien., 2001;26(1):23–9.

Stępkowski TM., Męczyńska-Wielgosz S., Kruszewski M. mitoLUH-MES: An Engineered Neuronal Cell Line for the Analysis of the Motility of Mitochondria. Cell. and Mol. Neurobiol. 2017;37 (6):1055–66.

Попов ВИ, Медведев НИ, Рогачевский ВВ, Игнатьев ДА, СтьюартМГ (Stewart MG), Фесенко ЕЕ. Трёхмерная организация синапсов и астроглии в гиппокампе крыс и сусликов: новые структурно-функциональные парадигмы работы синапса. Биофизика. 2003, 48(2):289–308.

Lewis TLJr, Kwon S-K, Lee A, Shaw R, Polleux F. MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nature Communications. 2018. V.9(1):5008.

Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 2017;11:637–45.

Bereiter-Hahn J. Mitochondrial dynamics in aging and disease. Prog. Mol. Biol. Transl. Sci. 2014;127:93–131.

Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 2015; V.4:6–13.

Stępkowski TM, Męczyńska-Wielgosz S, Kruszewski M. mitoLUH-MES: An Engineered Neuronal Cell Line for the Analysis of the Motility of Mitochondria. Cell. and Mol. Neurobiol. 2017;37 (6):1055–66.

Lemasters JJ. Selective Mitochondrial Autophagy, or Mitophagy, as a Targeted Defense Against Oxidative Stress, Mitochondrial Dysfunction, and Aging. Rejuvenation Research. 2005; 8(1):3–5.

Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J. Сell Вiol. 1962;12:198–202.

Youle RJ, Narendra DP. Mechanisms of mitophagy. Nature Reviews Molecular Cell Biol. 2011;12(1):9–14.

Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl. Acad. Sci. USA, 1994;91:1309–13.

Gleyzer N, Vercauteren K, Scarpulla RC. Control of Mitochondrial Transcription Specificity Factors (TFB1M and TFB2M) by Nuclear Respiratory Factors (NRF-1 and NRF-2) and PGC-1 Family Coactivators. Mol. Cell Biol., 2005;25:1354–66.

Ongwijitwat S, Wong-Riley MT. Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons? Gene, 2005;360:65–77.

Scarpulla RC. Nuclear control of respiratory gene expression in mammalian cells. J. Cell Biochem., 2006;97:673–83.

Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 2008;88:611–38.

Lang BF, Gray MW, Burger G. Mitochondrial genome evolution and the origin of eukaryotes. Annu. Rev. Genet. 1999;33:351–97.

Martin W, Herrmann RG. Gene transfer from organelles to the nucleus: how much, what happens, and why?. Plant. Physiol., 1998;118:9–17.

Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA. Sequence and gene organization of mouse mitochondrial DNA. Cell, 1981;26:167–80.

Basu K, Lajoie D, Aumentado-Armstrong T, Chen J, Koning RI, Bossy B et al. Molecular mechanism of DRP1 assembly studied in vitro by cryo-electron microscopy. PLOSS ONE; 2017.

Rovira-Llopis S, Bañuls C, Diaz-Morales N., Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 2017;11:637–45.

Voet D, Voet JG, Pratt ChW. Fundamentals of Biochemistry: Life at the Molecular Level. – New York City: John Wiley & Sons, Inc;2013:582–4.

Кольман Я, Рём К-Г. Наглядная биохимия. 4-е изд. М.: БИНОМ, Лаборатория знаний; 2012. 469 с.

Berg JM, Tymoczko JL, Stryer L. Biochemistry, Fifth Edition: International Version. San Francisco: W.H. Freeman; 2002. 1100 р.

Mitchell P, Moyle J. Chemiosmotic Hypothesis of Oxidative Phosphorylation. Nature, 1967;213 (5072):137–9.

Nelson DL, Lehninger AL, Cox MM. Lehninger Principles of biochem-istry. Fifth edition. N.Y.: W.H. Freeman and company; 2008. 1158 p.

Holmes JH, Sapeika N, Zwarenstein H. Inhibitory effect of antiobesity drugs on NADH dehydrogenase of mouse heart homogenates. Res. Commun. in Chem. Pathol. and Pharmacol. 1975;11(4):645–6.

Ермаков ИП, ред. Физиология растений. М.: Академия, 2005. 634 с.

Sund Н and Ullrich V, ed. Biological Oxidations: 34. Colloquium – Mosbach. Berlin; Heidelberg; New York; Tokyo: Springer-Verlag, 1983:191.

Gorbikova EA, Belevich I, Wikström M, Verkhovsky MI. The proton donor for O-O bond scission by cytochrome c oxidase. PNAS, 2008;105 (31):10733–7.

Pierron D, Wildman DE, Höttemann M, Markondapatnaikuni GCh, Aras S, Grossman LI. Cytochrome c oxidase: Evolution of control via nuclear subunit addition. Biochimica et Biophysica Acta – Bioener-getics. 2012;1817 (4):590–7.

Шмидт ФК. Физико-химические основы катализа. И.: Фрактал; 2004:9.

Mitchell P, Moyle J. Group-translocation: a consequence of enzyme-catalysed group-transfer. Nature, 1958;182:372–3.

Mitchell P, Moyle J. Enzyme catalysis and group translocation. Proc. Roy. Phys. Soc. Edinburgh, 1958;27:61–72.

Mitchell P. Coupling of phosphorylation to electron and hydro-gen transfer by a chemiosmotic type of mechanism. Nature, 1961;191:144–8.

Mitchell P (196l) in: Membrane Transport and Metabolism (Kleinzeller, A. and Kotyk, A., eds), Academic Press, New York:22–34.73.

Mitchell P. (1961) in: Biological Structure and Function. Proc. First IUB/IUBS Internat. Symp., Stockholm, 1960 (Goodwin TW and Lindberg O, eds) Academic Press, London;2:581–99.

Mitchell P. Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Glynn Research, Bodmin, Cornwall, England; 1966.

Mitchell P. Chemiosmotic Coupling and Energy Transduction. Glynn Research, Bodmin, Cornwall, England; 1968.

Mitchell, P. Metabolism, transport and morphogenesis: which drives which?. J. Gen. Microbiol., 1962;29:25–37.

Mitchell P. Reversible coupling between transport and chemical reactions. In: Membranes and Ion Transport, Vol.1. E.E. Bittar, ed. Wiley (Interscience), New York, 1970:192–256.

Mitchell, P. Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge. Bioenergetics, 1972(3):5–24.

Mitchell P. Performance and conservation of osmatic work by pro-ton-coupled solute porter systems. J. Bioenerg., 1973(4):63–91.

Mitchell P. in: Mechanisms in Bioenergetics (G.F. Azzone et al., eds), Academic Press, New York, 1973:177–201.

Mitchell P. in: Electron Transfer Chains and Oxidative Phosphorylation (E. Quagliariello et al., eds), North-Holland, Amsterdam, 1975:305–16.

Mitchell P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J. Theoret. Biol., 1976;62:327–67.

Mitchell P. From energetic abstraction to biochemical mechanism. Symp. Soc. Microbial. 1977; 27:383–423.

Wikström M.K.F. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature, 1977;266:271–3.

Hartmut M. Structure and Mechanism of Otto Warburg's Respiratory Enzyme, the Cytochrome c Oxidase. 2013. www.lindau-nobel.org

Rich PR. A perspective on Peter Mitchell and the chemiosmotic theory. J. Bioenerg. Biomembr.; 2008;40 (5):407–10.

Dubinskii AYu. A Model of Electron Transport in Chloroplasts Describing Mitchell’s Q Cycle: Calculation of the Steady-State Je and JH/Je. Biophizika, 2000;45:269–75.

Mitchell P. The protonmotive Q cycle: a general formulation. FEBS Lett., 1975;59 (2):137–9.

Trumpower BL. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J. Biol. Chem., 1990;265(20):11409–12.

Trumpower BL. Cytochrome bc1 complexes of microorganisms. Microbiol. Reviews. 1990;54(2):101–29.

Meinhardt SW, Yang X, Trumpower B, Ohnishi T. Identification of a stable ubisemiquinone and characterization of the effects of ubiquinone oxidation-reduction status on the Rieske iron-sulfur protein in the three-subunit ubiquinol-cytochrome c oxidoreductase complex of Paracoccus denitrificans. J. Biol. Chem. 1987;262: 8702–6.

Trumpower BL. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J. Biol. Chem. 1990;265 (20):11409–12.

Trumpower BL. Cytochrome bc1 complexes of microorganisms. Microbiol. Rev. 1990;54 (2):101–29.

Meinhardt SW, Ohnishi T. Determination of the position of the Qi-quinone binding from the protein surface of the cytochrome bc1 complex in Rhodobacter capsulates chromatophores. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 1992;1100 (1):67–74.

West I, Mitchell P, Rich P. Electron conduction between b cytochromes of the mitochondrial respiratory chain in the presence of antimycin plus myxothiazol. Biochim. Biophys. Acta., 1988;933 (1):35–41.

Tsai A-L, Ulson J, Palmer G. The oxidation of yeast Complex III. Evidence for a very rapid electron equilibration between cytochrome c1 and the iron-sulfur center. J. Biol. Chem., 1983;258:2122–5.

Tsai A-L, Kauten R, Palmer G. Redox changes in coenzyme Q in the millisecond time range: An approach using rapid quenching and high-performance liquid chromatography. Anal. Biochem., 1985;151 (1):131–6.

Ситько СП., Мкртчян ЛН. Введение в квантовую медицину. – Киев: Паттерн; 1994. 147 с.

Ермаков ВН, Понежа ЕА. Q-цикл Митчелла как возможный объект воздействия микроволнового излучения на биологические системы. Материалы V Международной конференции по квантовой медицине “Диагностические и лечебные технологии квантовой медицины”: Донецк, 2000:64.

Ерёменко АА, Брижик ЛС. Регуляция метаболического транспорта зарядов самоиндуцированным и внешним микроволновым излучением. – Материалы V Международной конференции по квантовой медицине “Диагностические и лечебные технологии квантовой медицины”: Донецк, 2000:58.

Russell JS. Report on Waves. – Report of the fourteenth meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845):311–90, Plates XLVII–LVII.

Russell JS. Report of the committee on waves. Report of the 7th Meeting of British Association for the Advancement of Science, John Murray, London, 1838:417–96.

Абловиц М, Сигур Х. Солитоны и метод обратной задачи. М.: Мир; 1987:12.

Zabusky NJ, Kruskal MD. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. 1965; Lett. 15:240–3.

Кокобелян АР, Зигмантович ЮМ. Синдром диабетической стопы иатеросклероз нижних конечностей. Вестник хирургии им.И.И.Грекова. СПб; 2006(3):74–8.

Рагино ЮИ, Малютина СК и др. Окисленные липопротеиды низкой плотности и их ассоциации с некоторыми факторами риска атеросклероза в популяции мужчин Новосибирска. Кардиология; 2005;45(10):39–44.

Братусь ВВ, Талаева ТВ. Воспаление как патогенетическая основа атеросклероза. Український кардіологічний журнал. 2007(1):90–6.

Шилкина НП, Дряженкова ИВ. Системные васкулиты и атеросклероз. Терапевтический архив. 2007; 79(3):84–92.

Талаєва ТВ, Амброскіна ВВ, Крячок ТА, Братусь ВВ. Системний характер порушень обміну ліпопротеїнів крові як основа патогенезу атеросклерозу: (огляд літератури). Журнал Академії медичних наук України. К., 2007;13(1):45–4.

Братусь ВВ, Талаєва ТВ, Амброскіна ВВ. та ін. Системний характер порушень метаболізму, активності запалення, оксидантного стресу та атерогенності плазми у хворих на ішемічну хворобу серця. Український кардіологічний журнал. 2007;3:8–18.

Орлова НН, Мхитарян ЛС, Евстратова ИН. Особенности свободнорадикальной модификации белков крови и апопротеинов атерогенных липопротеидов в условиях коронарного атеросклероза. Український кардіологічний журнал. 2005;6:122–5.

Петухова СВ, Денисова ДВ, Рагино ЮИ. Уровень продуктов перекисного окисления липидов в липопротеидах низкой плотности у подростков с гиперхолестеринемией и их родителей. Педиатрия. Журнал им. Г.Н. Сперанского. 2005;2:27–33.

Антонова КВ, Недосугова ЛВ, Балаболкин МИ. Влияние компенсации углеводного обмена на свободнорадикальное окисление липопротеидов низкой плотности и активность ферментативной антиоксидантной системы при сахарном диабете II типа. Проблемы эндокринологии: науч.-практ. журнал. 2003;49(2):51–4.

Горбачев ВВ, Мрочек АГ. Атеросклероз: Учеб. пособие. М.: Книж-ный Дом; 2005. 608 с.

Жданов ВС, Вихерт АМ, Стернби НГ. Эволюция и патология атеросклероза у человека. М.: Триада-Х; 2002. 144 с.

Дадвани СА, Сыркин АЛ, Азизова ОА. Окисляемость липидов плазмы у больных ишемической болезнью сердца и облитерирующим атеросклерозом артерий нижних конечностей. Кардиология, 2005;45(4):55–60.

Jolly SR, Kane WJ, Bailie MB, Abrams GD, Lucchesi BR. Canine myocardial reperfusion injury its reduction by the combined administration of superoxide dismutase and catalase. Circ. Res., 1984;54 (3):277–85.

Кравченко НА, Ярмыш НВ. Биохимические и молекулярно-генетические механизмы регуляции синтеза оксида азота эндотелиальной NO-синтазой в норме и при сердечно-сосудистой патологии. Український терапевтичний журнал. 2007;1:82–9.

Xia Y, Roman LJ, Masters BS, Zweier JL. Inducible nitric-oxide syntase generates superoxide from the reductase domain. J. Biol. Chem. 1998;273 (35):22635–9.

Xia Y, Zweier JL. Superoxide and peroxinitrite generation from inducible nitric oxide syntase in macrophages. PNAS USA, 1997;94 (13):6954– 8.

Silverton SF, Mesaros S, Markharn GD, Malinski T. Osteoclast radical interaction: NADPH causes pulsatile release of NO and stimulates superoxide production. Endocrinol. 1995;136 (11):5244–7.

Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. PNAS USA, 1990;87 (4):1620–4.

Peltola V, Huhtaniemi I, Metsa-Ketela T, Ahotupa M. Induction of lipid peroxidation during steroidogenesis in the rat testis. Endocrinology, 1996, Jan., 137(1):105–12.

Del Bello B, Paolicchi A, Comporti M, Pompella A, Maellaro. Hydrogen peroxide produced during gamma-glutamyl transpeptidase activity is involved in prevention of apoptosis and maintenance of proliferation of U937 cells. FASEB J., 1999;13:69–79.

Bass AM, Broida HP (eds). Formation and Trapping of Free Radicals. Academic Press, New York; 1960. 522 р.

Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Fifth Edition. Oxford University Press; 2015. 851 р.

McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 1969;244 (22):6049–55.

Воейков ВЛ. Ключевая роль активного кислорода в возникновении, становлении и осуществлении жизнедеятельности. Биологический факультет, каф. биоорганической химии МГУ им. М.Ю. Ломоносова, Москва. E-mail: vvl@soil.msu.ru

Vladimirov YuA, Archakov AI. Lipid peroxide oxidation in biological membranes. Nauka: Moscow; 1972. Р. 18.

Воейков ВЛ. Регуляторные функции активных форм кислорода в крови и в водных модельных системах. Автореферат диссертации на соискание ученой степени доктора биологических наук. Москва; 2003.

Колдунов ВВ, Кононов ДС, Воейков ВЛ. Системные свойства хемилюминесцентной химико-физической реакции между сахарами и аминокислотами в водной среде. Биологический факультет, МГУ им. М. В. Ломоносова, Москва. E-mail: vvl@ecol.msr.ru

Воейков ВЛ. Вода с активным кислородом – вода жизни. Москва: Дельфис; 2005; 1(41):109–12; 2 (42):106–10.

Bacchiocchi C, Zannoni C. Energy Transfer in condenced systems. The effect of phase organization. Chem. Phys. Lett. 1997; 268:541–8.

Ultraweak luminescence in biology. Transaction of the Moscow Society of Naturalists; XXXIXX. Editor-in-Chief A.I. Zhuravlev, Nauka: Moscow, 1972. 272 p.

Cambell AC. Chemiluminescence. Principles and Applications in Bi-ology and Medicine. Ellis Horwood Ltd., Chichester; 1988.

Басков ИВ, Воейков ВЛ. Роль электронновозбуждённых состояний в биохимических процессах. Биохимия, 1996; 61:1169–81.

Белоусов ЛВ, Воейков ВЛ, Попп ФА. Митогенетические лучи Гурвича. Природа; 1997(3):64–80.

Шноль СЭ. Общие проблемы физико-химической биологии. М.: ВИНИТИ, 1985; 5:130.

Погодаев КИ. К биологическим основам “стресса” и “адаптационного синдрома”. В кн.: Актуальные проблемы стресса. Кишинёв: Штиинца, 1976:211–29.

Гурвич АГ, Гурвич ЛД., Митогенетическое излучение, физико-химические основы и приложения в биологии и медицине. М.; 1945. 283 с.

Туоси М, Хасан М. Гомеопатия – биофизическая точка зрения. Вестник биофизической медицины; 1996;1:3–18.

Чиркова ЭН, Бабаев ЮН. Волновая природа информации в живой материи. Иммунологическая специфичность биологического поля клеток и тканей. Магнитобиология; 1992;2:31–8.

Чиркова ЭН, Бабаев ЮН. Электромагнитная природа иммунитета. Современные проблемы изучения и сохранения биосферы. СПб; 1992:142–54.

Manasyan KA. Adaptivity of receptive fields of neurons in the posterotemporal cortex and their sensitivity to parameters of light stimulation in cats. Neurosci. Behav. Physiol. 1988;18(1):43–9.

Paradiso MA. Visual neuroscience: illuminating the dark corners. Curr. Biol. 2000;10 (1):15–8.

Sekuler AB, Bennett PJ. Visual neuroscience: Resonating to natural images. Curr. Biol., 2001;11 (18):733–6.

Duhamel JR. Multisensory integration in cortex: shedding light on prickly issues. Neuron, 2002;34 (4):493–5.

Beauchamp MS. See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex. Curr. Opin. Neurobiol. 2005;15(2):145–53.

Dinstein I, Thomas C, Behrmann M, Heeger DJ. A mirror up to nature. Curr. Biol. 2008;18 (1):13–8.

Dinstein I, Thomas C, Behrmann M, Heeger DJ. A mirror up to nature. Curr. Biol. 2008;18 (1):13–8.

Kilner JM, Frith CD. Action observation: inferring intentions without mirror neurons. Curr. Biol. 2008;18 (1):32–3.

Wall M, Lingnau A, Ashida H, Smith AT. Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Eur. J. Neurosci. 2008;27 (10):2747–57.

Becker HG, Erb M, Haarmeier T. Differential dependency on motion coherence in subregions of the human MT+ complex. Eur. J. Neuro-sci. 2008;28 (8):1674–85.

Kolster H, Peeters R, Orban GA. The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J. Neurosci. 2010;30 (29):9801–20.

Ходоров БИ. Проблемы возбудимости. Л., 1969.

Судаков КВ, ред. Физиология. Основы и функциональные системы: Ф50 Курс лекций. М.: Медицина; 2000. 784 с.

Новая философская энциклопедия: в 4 т./ пред. науч.-ред. совета В.С. Стёпин. 2-е изд. М.: Мысль; 2010.

Ascoli GA, Alonso-Nanclares L, Anderson SA et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience. 2008, July;9(7):557–68.

Braitenberg V. Cell Assemblies in the Cerebral Cortex. Theoretical Approaches to Complex Systems: proceedings, Tubingen, June 11–12, 1977/ Roland Heim. Springer. 1978(21):171–8.

Braitenberg V. Brain Size and Number of Neurons: An Exercise in Synthetic Neuroanatomy. J. of Computational Neurosci. 2001;10 (1):71–7.

Kreitzer AC, Regehr WG. Retrograde signaling by endocannabinoids. Current Opinion in Neurobiol. 2002;12 (3):324–30.

Castillo PE, Younts ThJ, Chávez AE, Hashimotodani Y. Endocannabinoid Signaling and Synaptic Function. Neuron. 2012;76 (1):70–81.

Iremonger KJ, Cusulin JIW, Bains JS. Changing the tune: plasticity and adaptation of retrograde signals. Trends in Neurosci. 2013;36(8):471–9.

Ohno-Shosaku T, Kano M. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Current Opinion in Neurobiol. 2014;29:1–8.

Tomas-Roig J, Piscitelli F, Gil V, del Río JA, Moore TP, Agbemenyah H et al. Social defeat leads to changes in the endocannabinoid system: An overexpression of calreticulin and motor impairment in mice. Behavioural Brain Research. 2016;303

Bukalo O, Lee PhR, Fields RD. BDNF mRNA abundance regulated by antidromic action potentials and AP-LTD in hippocampus. Neurosci. Letters. 2016;635:97–102.

Buzsaki G, Anastassiou CA, Koch Ch. The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes. Nature Reviews Neurosci. 2012;13 (6):407–20.

Einevoll GT, Kayser Ch, Logothetis NK, Panzeri S. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nature Reviews Neurosci. 2013;14 (11):770–85.

Braitenberg V. Thoughts on the cerebral cortex. Journal of Theoretical Biology. 1974;46 (2):421–47.

Braitenberg V, Schuz A. Cortex: statistics and geometry of neuronal connectivity, 2nd ed. Springer, 1998. 249 р.

Poirazi P, Mel BW. Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue. Neuron 2001;29(3): 779–96.

Mel BW. Information Processing in Dendritic Trees. Neural Computation. 1994;6 (6):1031–85.

Poirazi P, Brannon T, Mel BW. Pyramidal Neuron as Two-Layer Neural Network. Neuron. 2003; 37 (6):989–99.

Major G, Polsky A, Denk W, Schiller J, Tank DW. Spatiotemporally Graded NMDA Spike/Plateau Potentials in Basal Dendrites of Neocortical Pyramidal Neurons. J. of Neurophysiol. 2008;99 (5): 2584–601.

Katz Y, Menon V, Nicholson DA, Geinisman Y, Kath WL, Spruston N. Synapse Distribution Suggests a Two-Stage Model of Dendritic Integration in CA1 Pyramidal Neurons. Neuron. 2009;63 (2):171–7.

Branco T, Clark BA, Hausser M. Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons. Science 2010;329 (5999): 1671–5.

Taniguchi H, Lu J, Huang ZJ. The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex. Science. 2013;339 (6115):70–4.

Boldog E, Bakken TE et al. Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nature Neurosci. 2018;21:1185–95.

Luo Ch, Keown CL, Kurihara L, Zhou J, He Y, Li J et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex|. Science. 2017;357 (6351):600–4.

Foust A, Popovic M, Zecevic D, McCormick DA. Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. J. Neurosci. 2010;30 (20):6891–902.

Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ. Action potential generation requires a high sodium channel density in the axon initial segment. Nat. Neurosci. 2008;11 (2):178–86.

Bereshpolova Y, Amitai Y, Gusev AG, Stoelzel CR, Swadlow HA. Dendritic backpropagation and the state of the awake neocortex. J.Neurosci. 2007;27 (35):9392–9.

Fiala JC, Harris KM. Dendrites/ G. Stuart, N. Spruston, M. Häusser (eds.). – Oxford: Oxford Press; 1999:1–34.

Xiong W, Chen WR. Dynamic Gating of Spike Propagation in the Mitral Cell Lateral Dendrites. Neuron, 2002;34 (1):115–26.

Oesch N, Euler Th, Taylor WR. Direction-Selective Dendritic Action Potentials in Rabbit Retina. Neuron, 2005;47 (5):739–50.

Schiller J, Schiller Y. NMDA receptor-mediated dendritic spikes and coincident signal amplification. Current Opinion in Neurobiology. 2001, 11 (3):343–8.

Major G, Larkum ME, Schiller J. Active Properties of Neocortical Pyramidal Neuron Dendrites. Annual Review of Neurosci. 2013;36 (1):1–24.

Johnston D, Magee JC, Colbert CM, Christie BR. Active Properties of Neuronal Dendrites. Annual Review of Neurosci. 1996;19 (1):165–86.

Reyes A. Influence of dendritic conductances on the input-output properties of neurons. Annual Review of Neurosci. 2001;24 (1):653–75.

Schoepp DD. Where will new neuroscience therapies come from? Nat. Rev. Drug Discov. 2011, Sept.;10 (10):715–6.

Larkum M, Nevian T. Synaptic clustering by dendritic signalling mechanisms. Current Opinion in Neurobiology 2008;18 (3):321–31.

Chen WR, Midtgaard J, Shepherd GM. Forward and Backward Propagation of Dendritic Impulses and Their Synaptic Control in Mitral Cells. Science;1997;278 (5337):463–7.

Hausser M, Stuart G, Racca C, Sakmann B. Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron, 1995;15 (3):637–47.

Martina M, Vida I, Jonas P. Distal Initiation and Active Propagation of Action Potentials in Interneuron Dendrites. Science, 2000;287 (5451):295–300.

Stuart G, Schiller J, Sakmann B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. of Physiology, 1997;505 (3):617–32.

Schiller J, Schiller Y, Stuart G, Sakmann B. Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. of Physiology, 1997;505 (3):605–16.

Golding NL, Spruston N. Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons. Neuron 1998;21 (5):1189–200.

Fatt P. Electric potentials occurring around a neurone during its antidromic activation. J. of Neurophysiol. 1957;20 (1):27–60.

Andersen P. Interhippocampal Impulses. Acta Physiologica Scandi-navica, 1960;48(2):178–208.

Cragg BG, Hamlyn LH. Action potentials of the pyramidal neurones in the hippocampus of the rabbit. J. of Physiol., 1955;129 (3):608–27.

Fujita Y., Sakata H. Electrophysiological properties of CA1 and CA2 apical dendrites of rabbit hippocampus. J. of Neurophysiol., 1962;25 (2):209–22.

Wong RKS, Prince DA, Basbaum AI. Intradendritic recordings from hippocampal neurons. PNAS USA, 1979;76(2):986–90.

Pinault D. Backpropagation of action potentials generated at ectopic axonal loci: hypothesis that axon terminals integrate local environ-mental signals. Brain Res., Brain Res. Rev. 1995;21 (1):42–92.

Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature, 2006;441 (7094):761–5.

Nevian T, Larkum ME, Polsky A., Schiller J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp record-ing study/ /Nat. Neurosci. 2007;10 (2):206–14.

Shu Y, Duque A, Yu Y, Haider B, McCormick DA. Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J. of Neurophysiol. 2007;97 (1):746–60.

Shu Y. Neuronal signaling in central nervous system. Sheng Li Xue Bao. 2011;63 (1):1–8.

Shepherd GM. Creating Modern Neuroscience: The Revolutionary 1950s. Oxford University Press; 2009. 304 р.

Chang H-T. Dendritic potential of cortical neurons produced by direct electrical stimulation of the cerebral cortex. J. of neurophysiology. 1951;14 (1):1–21.

Chang H-T. Cortical neurons with reference to the apical dendrites. Cold Spring Harbor Symposia on Quantitative Biology. 1952;17 (0):189–202.

Hausser M, Stuart G, Racca Cl, Sakmann B. Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron, 1995;15 (3):637–47.

Stuart G, Schiller J, Sakmann B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. of Physiology 1997;505 (3):617–32.

Stuart GJ, Sakmann B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature, 1994;367 (6458):69–72.

Lebedeva SA, Stepanyuk AR, Belan PV. Local Signalization in Dendrites and Mechanisms of Short-Term Memory. Neurophysiology. 2013;45 (4):359–67.

Cuntz H, Forstner F, Borst A, Häusser M. One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application. PLoS Comput. Biol. 2010, Aug.;6 (8).

Schuz A, Palm G. Density of neurons and synapses in the cerebral cortex of the mouse. Journal of Comparative Neurol. 1989;286 (4):442–55.

Kernell D, Zwaagstra B. Dendrites of cat's spinal motoneurones: relationship between stem diameter and predicted input conductance. Journal of Physiol. 1989;413 (1):255–69.

Коржевский ДЭ, ред. Теоретические основы и практическое применение методов иммуногистохимии (руководство). 2014.

Segev I. Cable and Compartmental Models of Dendritic Trees. The Book of GENESIS. Exploring Realistic Neural Models with the General Neural Simulation System. Springer New York; 1998:51–77.

Bower JM, Beeman D. The Book of GENESIS: Exploring Realistic Neural Models with the General Neural Simulation System. Springer Science & Business Media; 2012. 458 р.

Branco T, Clark BA, Hausser M. Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons. Science. 2010;329 (5999):1671–5.

Takahashi N, Kitamura K, Matsuo N, Mayford M, Kano M, Matsuki N et al. Locally Synchronized Synaptic Inputs. Science 2012;335 (6066):353–6.

Smith SL, Smith IT, Branco T, Hausser M. Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature. 2013;503:115–20.

Sivyer B, Williams SR. Direction selectivity is computed by active dendritic integration in retinal ganglion cells. Nature Neurosci. 2013;16:1848–1856.

Larkum M. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends in Neurosci. 2013;36 (3):141–51.

Agmon-Snir H, Carr CE, Rinzel J. The role of dendrites in auditory coincidence detection. Nature, 1998;393 (6682):268–72.

Grienberger C, Adelsberger H, Stroh A, Milos RI., Garaschuk O, Schierloh A. et al. Sound-evoked network calcium transients in mouse auditory cortex in vivo. J. of Physiology. 2012; 590 (4):899–918.

Garcia-Lopez P, Garcia-Marin V, Freire M. The discovery of dendritic spines by Cajal in 1888 and its relevance in the present neuroscience. Progress in Neurobiol. 2007;83 (2):110–30.

Peron SP, Jones PW, Gabbiani F. Precise Subcellular Input Retinotopy and Its Computational Consequences in an Identified Visual Interneuron. Neuron, 2009;63 (6):830–42.

Frankfurt M, Luine V. The evolving role of dendritic spines and memory: Interaction(s) with estradiol. Hormones and Behavior. 2015;74:28–36.

Bosch M, Hayashi Y. Structural plasticity of dendritic spines. Current Opinion in Neurobiol. 2012;22 (3):383–8.

Sholl DA. The Organization of the Cerebral Cortex. Hafner Publishing Company; 1956. 125 р.

Чубарко АИ, ред. Нормальная физиология: учебник. В 2-х частях. Ч.1. Минск: Вышейшая школа;2013;182. 542 с.

Chklovskii D. Synaptic Connectivity and Neuronal Morphology. Neuron, 2004;43 (5):609–17.

Hammond C. Cellular and Molecular Neurobiology. – Academic Press, 2001. 493 р.

Koch Ch, Zador A. The Function of Dendritic Spines: Devices Sub-serving Biochemical Rather Than Electrical Compartmentalization. J. of Neurosci. 1993;13 (2):413–22.

Knott G, Holtmaat A. Dendritic spine plasticity – Current understanding from in vivo studies. Brain Research Reviews, 2008;58 (2):282–9.

Попов ВИ, Медведев НИ, Рогачевский ВВ, Игнатьев ДА, Стьюарт МГ, Фесенко ЕЕ. Трёхмерная организация синапсов и астроглии в гиппокампе крыс и сусликов: новые структурно-функциональные парадигмы работы синапса. Биофизика. 2003;48(2):289–308.

Magee JC, Johnston D. Plasticity of dendritic function. Current Opinion in Neurobiol. 2005;15 (3):334–42.

Савельев АВ. Методология синаптической самоорганизации и проблема дистальных синапсов нейронов. Журнал проблем эволюции открытых систем. Казахстан: Алматы; 2006; 8(2):96–104.

Краснощекова ЕИ. Модульная организация нервных центров. СПб: СпбГУ, 2007.

Sjostrom PJ, Rancz EA, Roth A, Hausser M. Dendritic Excitability and Synaptic Plasticity. Physiological Reviews, 2008;88 (2):769–840.

Kasai H, Fukuda M, Watanabe S, Hayashi-Takag A, Noguchi J. Structural dynamics of dendritic spines in memory and cognition. Trends in Neurosci. 2010;33 (3):121–9.

Major G, Larkum ME, Schiller J. Active Properties of Neocortical Pyramidal Neuron Dendrites. Annual Review of Neuroscience. 2013;36 (1):1–24.

Priel A, Tuszynski JA, Woolf NJ. Neural cytoskeleton capabilities for learning and memory. Journal of Biological Physics 2009;36 (1):3–21.

Yuste R, Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annual Review of Neurosci. 2001;24 (1):1071–89.

Hotulainen P, Hoogenraad CC. Actin in dendritic spines: connecting dynamics to function. The Journal of Cell Biology 2010;189 (4):619–29.

Matsuzaki M, Honkura N, Ellis-Davies GC., Kasai H. Structural basis of long-term potentiation in single dendritic spines. Nature, 2004;429:761–6.

Fischer M, Kaech S, Knutti D, Matus A. Rapid Actin-Based Plasticity in Dendritic Spines. Neuron. 1998 May;20 (5):847–54.

Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H. Structure-stability-function relationships of dendritic spines. Trends in Neurosci. 2003;26 (7):360–8.

Segev I, Rall W. Computational study of an excitable dendritic spine. J. of Neurophysiol.1988;60 (2):499–523.

Wickens J. Electrically coupled but chemically isolated synapses: dendritic spines and calcium in a rule for synaptic modification. Prog. Neurobiol. 1988;31(6):507–28.

Jaslove SW. The integrative properties of spiny distal dendrites. Neurosci. 1992;47 (3):495–519.

Coss RG, Perkel DH. The function of dendritic spines: a review of theoretical issues. Behav. Neural. Biol. 1985;44(2):151–85.

Harris KM, Kater SB. Dendritic Spines: Cellular Specializations Imparting Both Stability and Flexibility to Synaptic Function. Annual Review of Neurosci. 1994;17:341–71.

Chklovskii D. Synaptic Connectivity and Neuronal Morphology. Neuron. 2004;43, Issue 5:609–17.

Arbib MA. The Handbook of Brain Theory and Neural Networks. 2-nd Edition. Cambridge, Mass: MIT Press; 2003. 1308 p.

Holmes WR, Rall W. Dendritic Spines. Handbook of Brain Theory and Neural Networks. Mit Press; 2003:332–5.

Yang CR, Seamans JK. Dopamine D1 receptor actions in layers V–VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J. of Neurosci. 1996;16 (5):1922–35.

Graham LJ, van Elburg RAJ, van Ooyen A. Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells. PLoS Computational Biology. 2010;6 (5): e1000781.

Vetter P, Roth A, Hausser M. Propagation of Action Potentials in Dendrites Depends on Dendritic Morphology. J. of neurophysiol. 2001;85 (2):926–37.

Schaefer AT, Larkum ME, Sakmann B, Roth A. Coincidence Detection in Pyramidal Neurons Is Tuned by Their Dendritic Branching Pat-tern. J. of Neurophysiol. 2003, 89 (6):3143–54.

Mainen ZF, Sejnowski TJ. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 1996;382:363–6.

van Ooyen A, Duijnhouwer J, Remme MW, van Pelt J. The effect of dendritic topology on firing patterns in model neurons. Network; 2002;13 (3):311–25.

Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 2008;9 (3):206–21.

Chen JY. A simulation study investigating the impact of dendritic morphology and synaptic topology on neuronal firing patterns. Neural. Comput. 2010;22 (4):1086–111.

van Elburg RA, van Ooyen A. Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Comput. Biol. 2010;6(5): e1000781.

Bastian J, Nguyenkim J. Dendritic modulation of burst-like firing in sensory neurons. Journal of Neurophysiol. 2001;85 (1):10–22.

Mehaffey WH, Ellis LD, Krahe R, Dunn RJ, Chacron MJ. Ionic and neuromodulatory regulation of burst discharge controls frequency tuning. J. Physiol. Paris, 2008;102 (4–6):195–208.

Byrne JH, Heidelberger R, Waxham MN, Byrne JH, Roberts JL, еd. From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience. 2nd Edition. Academic Press; 2009. 656 р.

Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews Neurosci. 2008;9 (3):206–21.

Arbib MA. The Handbook of Brain Theory and Neural Networks: Second Edition. MIT Press, 2003:324–32. 1308 p.

Koch Ch. Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, 2004. 562 р.

Peters A, Palay SL. The morphology of synapses. J. of Neurocytol., 1996; 25;1:687–700.

Schmitt RO, Dev P, Smith BH. Electrotonic processing of information by brain cells. Science, 1976;193 (4248):114–20.

Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature. 2006;441 (7094). 761–5.

Henderson Z, Morris NP, Grimwood P, Fiddler G, Yang HW, Appenteng K. Morphology of local axon collaterals of electrophysiologically characterised neurons in the rat medial septal/diagonal band complex. J. Comp. Neurol. 2001;430 (3):410–32.

Shu Y, Duque A, Yu Y, Haider B, McCormick DA. Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J. Neurophysiol. 2007;97 (1):746–60.

Nevian T, Larkum ME, Polsky A, Schiller J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat. Neurosci. 2007;10 (2):206–14.

Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J. Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science; 2009;325 (5941):756–60.

Meier C, Dermietzel R. Electrical synapses-gap junctions in the brain. Science, 1976;193 (4248):114–20.

Fuxe K, Dahlström A, Höistad M, Marcellino D, Jansson A, Rivera A et al. From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res. Rev. 2007;1:17–54.

Fischer M, Kaech S, Knutti D, Matus A. Rapid Actin-Based Plasticity in Dendritic Spines. Neuron, 1998;20 (5):847–54.

Purpura DP. Dendritic Spine “Dysgenesis” and Mental Retardation. Science. 1974; 186 (4169):1126–28.

Marin-Padilla M. Structural abnormalities of the cerebral cortex in human chromosomal aberrations: a Golgi study. Brain Research, 1972;44 (2):625–9.

Scheibel ME, Scheibel AB. Differential Changes with Aging in Old and New Cortices. Advances in Behavioral Biology, 1977;23: 39–58.

Kaufmann WE, Moser HW. Dendritic Anomalies in Disorders Associated with Mental Retardation. Cerebral Cortex, 2000;10 (10):981–91.

Dierssen M, Ramakers GJA. Dendritic pathology in mental retardation: from molecular genetics to neurobiology. Genes, Brain and Behavior 2006, 5 (2):48–60.

Zhang Sh, Wang J, Wang L. Structural plasticity of dendritic spines. Frontiers in Biology. 2010;5 (1):48–58.

Bennett MR. Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Progress in Neurobiol. 2011;95 (3):275–300.

Falke E, Nissanov J, Mitchell ThW, Bennett DA, Trojanowski JQ, Arnold SE. Subicular Dendritic Arborization in Alzheimer's Disease Correlates with Neurofibrillary Tangle Density. American J. of Pa-thology, 2003;163 (4):1615–21.

Yu W, Lu B. Synapses and Dendritic Spines as Pathogenic Targets in Alzheimer’s Disease. Neural Plasticity 2012;2012:1–8.

Penzes Р, Cahill ME, Jones KA, Van Leeuwen J-E, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nature Neuro-sci. 2011;14 (3):285–93.

Morse ThM, Carnevale NT, Mutalik PG, Migliore M, Shepherd GM. Abnormal excitability of oblique dendrites implicated in early Alzheimer's: a computational study. Frontiers in Neural Circuits; 2010.

Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neurosci. 2013;251:90–107.

Ventura R, Harris KMJ. Neuroscien. 1999;19(16:6897–906.

Berger T, Muller T, Kettenmann H. Developmental regulation of ion channels and receptors on glial cells. Perspect. Dev. Neurobiol. 1995;2 (4):347– 56.

Condorelli DF, Conti F, Gallo V еt al. Expression and functional analysis of glutamate receptors in glial cells. Adv. Exp. Med. Biol., 1999;468:49–67.

von Blankenfeld G, Kettenmann H. Glutamate and GABA receptors in vertebrate glial cells. Mol. Neurobiol. 1991;5 (1):31–43.

Гиляров МС и др. Нейроглия. Биологический энциклопедический словарь. 2-е изд. Москва: Сов. Энциклопедия; 1986:446.

Akir T, Alsan S, Saybasili H, Akin A, Ülgen-Cakir K. Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia. Theoretical Biology and Medical Modelling, 2007;4 (1). Р. 48.

Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535:551–5.

Singhvi A, Liu B, Friedman CJ, Fong J, Lu Y, Huang X-Y, Shaham S. A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC. Cell. 2016;165:936–48.

Wallace SW, Singhvi A, Liang Y, Lu Y, Shaham S. PROS-1/Prospero Is a Major Regulator of the GliaSpecific Secretome Controlling Sensory-Neuron Shape and Function in C. elegans. Cell Reports. 2016;15:550–62.

Farhy-Tselnicker I, van Casteren ACM, Lee A, Chang VT et al. Astrocyte-Secreted Glypican 4 Regulates Release of Neuronal Pentraxin 1 from Axons to Induce Functional Synapse Formation. Neuron. 2017;96:428–45.

Dickens AM, Tovar-y-Romo LB, Yoo SW, Trout AL, Bae M, Kanmogne M et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci. Signal. 2017;10, Pages: eaai 7696.

Lee HS, Ghetti A, Pinto-Duarte A, Wang X, Dziewczapolski G, Galimi F et al. Astrocytes contribute to gamma oscillations and recognition memory. PNAS USA. 2014;111 (32):3343–52.

Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 2009;459 (7247):698–702.

Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED. Astrocytes Regulate Daily Rhythms in the Suprachiasmatic Nucleus and Behavior. Current Biology. 2017;27:1055–61.

Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011, Sept.;333 (6048):1456–8.

Biber K, Möller T, Boddeke E, Prinz M. Central nervous system myeloid cells as drug targets: current status and translational challenges. Nature Reviews Drug Discovery. 2016, Dec.;15(2):110–24.

Roitbak AL, Fanardjian УУ. Neurosci. 1981;6(12):2529–37.

Ройтбак АИ. Глия и её роль в нервной деятельности. СПб: Наука; 1993.

Porter JT, McCarthy KDJ. Neurosci. 1996;16(16):5073–81.

Мотавкин ПА. Курс лекций по гистологии. “Медицина ДВ”; 2007:137.

Sotelo C, Korn H. Morphological correlates of electrical and other interactions through low-resistance pathways between neurons of the vertebrate central nervous system. Int. Rev. Cytol. 1978;55:67–107.

Sotelo C. Cerebellar synaptogenesis: what we can learn from mutant mice. J. Exp. Biol., 1990;153:225–49.

Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science, 1994;263(5154):1768–71.

Cotrina ML, Kang J, Lin JH, Bueno E, Hansen Т, He L. et al. Nedergaard M. Neurosci. 1998;18(7):2520–37.

Alvarez-Maubecin V, Garcia-Hernandez K, Williams JT. Functional coupling between neurons and glia. Neurosci. 2000;20(11):4091–8.

Rozental R, Andmde-Rozental AF, Zheng X, Urban M, Spray DC, Chiu F-C. Gap junction-mediated bi-directional signaling between human fetal hippocampal neurons and astrocytes. Dev. Neurosci., 2001; 23(6):420–31.

Rash JE, Dillman RK, Bilhartz BL, Duff HS, Whalen LR, Yasumura T. Mixed synapses discovered and mapped throughout mammalian spinal cord. PNAS USA, 1996;93(9):4235–9.

Fukuda Т, Kosaka T. Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus. J. Neurosci. 2000;20(4):1519–28.

Rash JK, Yasumura Т, Dudek FE, Nagy JI. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J. Neurosci., 2001;21(6):1983–2000.

Rash JE, Staines WA, Yasumura Т, Patel D, Furman CS, Stelmack GL etal. Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin36 (Cx36) but not Cx32 or Cx43. PNAS USA, 2000;97(13:7573–8.

Попов ВИ, Медведев НИ, Рогачевский ВВ, Игнатьев ДА, Стьюарт МГ (Stewart MG), Фесенко ЕЕ. Трёхмерная организация синапсов и астроглии в гиппокампе крыс и сусликов: новые структурно-функциональные парадигмы работы синапса. Биофизика. 2003;48(2):289–308.

Основы современной теории феномена “боль” с позиции системного подхода. Нейрофизиологические основы. Часть 1-ая: краткое представление ключевых субклеточных и клеточных структурных элементов центральной нервной системы
Published
2019-02-21
How to Cite
1.
Poberezhnyi VI, Marchuk OV, Shvidyuk OS, Petrik IY, Logvinov OS. Fundamentals of the modern theory of the phenomenon of "pain" from the perspective of a systematic approach. Neurophysiological basis. Part 1: A brief presentation of key subcellular and cellular ctructural elements of the central nervous system. PMJUA [Internet]. 21Feb.2019 [cited 20Mar.2019];3(4):6-0. Available from: https://painmedicine.org.ua/index.php/pnmdcn/article/view/164
Section
Problem article